University of Diyala

Computer Science Department
Image Processing

3rd Class

Lecturer: Dr. Jumana Waleed Salih

Image Processing

Jga dallaa

3" lecture

Converting between Data Classes

Converting between data classes is straightforward. The general syntax is

B = data_class_name(A)

Examples:
B = double(A)
D=uint8(C)

Converting between Image Classes and Types

Write the following array in the command window
>>v=[-0.50.5; 0.75 1.5]
V=

-0.5000 0.5000
0.7500 1.5000

Performing the conversion
>> w=im2uint8(v)

yields the result
W=

0 128
191 255

Other examples:
>> f=imread('E:\peppers.png');

>> z=im2bw(f);
>> imshow(z);

Name Converts Input to: Valid Input Image Data Classes
im2uint8 uints logical,uint8,uint16, and double
im2uinti1e6 wint1g logical,uint8,uint16, and double
mat2gray double (in range [0,1]) double
im2double double logical,uint8,uint16, and double
im2bw logical uint8,uint18, and double

>> h = uint8([25 50; 128 200]);
Performing the conversion
>> g = im2double(h);
yields the result
g =
0.0980 0.1961
0.4708 0.7843
from which we infer that the conversion when the input is of class uint8 is

done simply by dividing each value of the input array by 255. If the input is of
class uint16 the division is by 65535.

Vector Indexing

> v = [1357 9]

v o=
1 3 &5 7 8

== y(2)

ans =

3

A row vector is converted to a column vector using the transpose operator (. '):

> W=V,
w =

1

3

5

7

9

To access blocks of elements, we use MATLAB’s colon notation. For exam-
ple, to access the first three elements of v we write

>> v{1:3)

ans =
1 3 5

Similarly, we can access the second through the fourth elements

>» y(2:4)
ans =
3 5 7

or all the elements from, say, the third through the last element:

>> y(3:end)
ans =
5 7 9

where end signifies the last element in the vector. If v is a vector, writing

= \r{:]

produces a column vector, whereas writing
>> v(1:end)

produces a row vector.
Indexing is not restricted to contiguous elements. For example,

> v{1:2:end)
ans =
1 5 9

The notation 1:2: end says to start at 1, count up by 2 and stop when the count
reaches the last element. The steps can be negative:

>> v(end:-2:1)
ans =
8 5 1

A vector can even be used as an index into another vector. For example, we
can pick the first, fourth, and fifth elements of v using the command

>> v([1 4 5])
ans =

i 7T 9
Matrix Indexing

Matrices can be represented conveniently in MATLAB as a sequence of row
vectors enclosed by square brackets and separated by semicolons. For exam-

ple, typing

>> A=1[123; 456, 78 9]
displays the 3 X 3 matrix

A=
1 2 3
4 5 G
7 8 9

We select elements in a matrix just as we did for vectors, but now we need
two indices: one to establish a row location and the other for the correspond-
ing column. For example, to extract the clement in the second row, third col-

umn, we write

>> A2, 3)
ans =
6

The colon operator is used in matrix indexing to select a two-dimensional
block of elements out of a matrix. For example,

»> €3 = A(:, 3)
€3 =

=2

Here, use of the colon by itself is analogous to writing A(1:3,3), which simply
picks the third column of the matrix. Similarly, we extract the second row as
follows:

>> R2 = A(2,)
R2 =
4 5 6

The following statement extracts the top two rows:

>> T2 = A(1:2, 1:3)
T2 =

2 3
4 5 B

To create a matrix B equal to A but with its last column set to Os, we write

>> B = A;

>> B(:, 3) = 0

B =
i 2 0
4 5 0
7 8 0

>> A(end, end)
ang =
9

>> A(end, end — 2)
ans =

7
=> A(2:end, end:-2:1)

ans
6 4
9 7

Using vectors to index into a matrix provides a powerful approach for ele-
ment selection. For example,

>> E = A([1 3], [2 3])
E =
2 3
8 g

The notation A([a b],[c d]} picks out the elements in A with coordinates
(row a, column ¢), (row a, column d), (row b, column c), and (row b, column
d). Thus, when we let E=A{[1 3], [2 3]) we are selecting the following ele-
ments in A: the element in row 1 column 2, the element in row 1 column 3, the
element in row 3 column 2, and the element in row 3 column 3.

This use of the colon is helpful when, for example, we want to find the sum of
all the elements of a matrix:

>> § = sum{A{:))
s =
45

Examples:
>> f=imread('E:\rose.jpg");

>> fp=f(end:-1:1,:);
>> imshow(fp);

>> fc=f(1:2:end, 1:2:end);
>> imshow(fc);

Some Important Standard Arrays

* zeros(M, N) generates an M x N matrix of Os of class double.

* ones(M, N) generates an M x N matrix of 1s of class double.

* true(M, N) generates an Mx N logical matrix of 1s.

* false(M, N) generates an M x N logical matrix of Os.

* magic(M) generates an M x M “magic square,” This is a square array in
which the sum along any row, column, or main diagonal, is the same. Magic
squares are useful arrays for testing purposes because they are easy to
generate and their numbers are integers.

* rand(M, N) generates an Mx N matrix whose entries are uniformly distrib-
uted random numbers in the interval [0, 1].

* randn(M, N} generates an M x N matrix whose numbers are normally dis-
tributed (i.e., Gaussian} random numbers with mean 0 and variance 1.

